What Can Neural Networks Teach Us about Language?

Graham Neubig

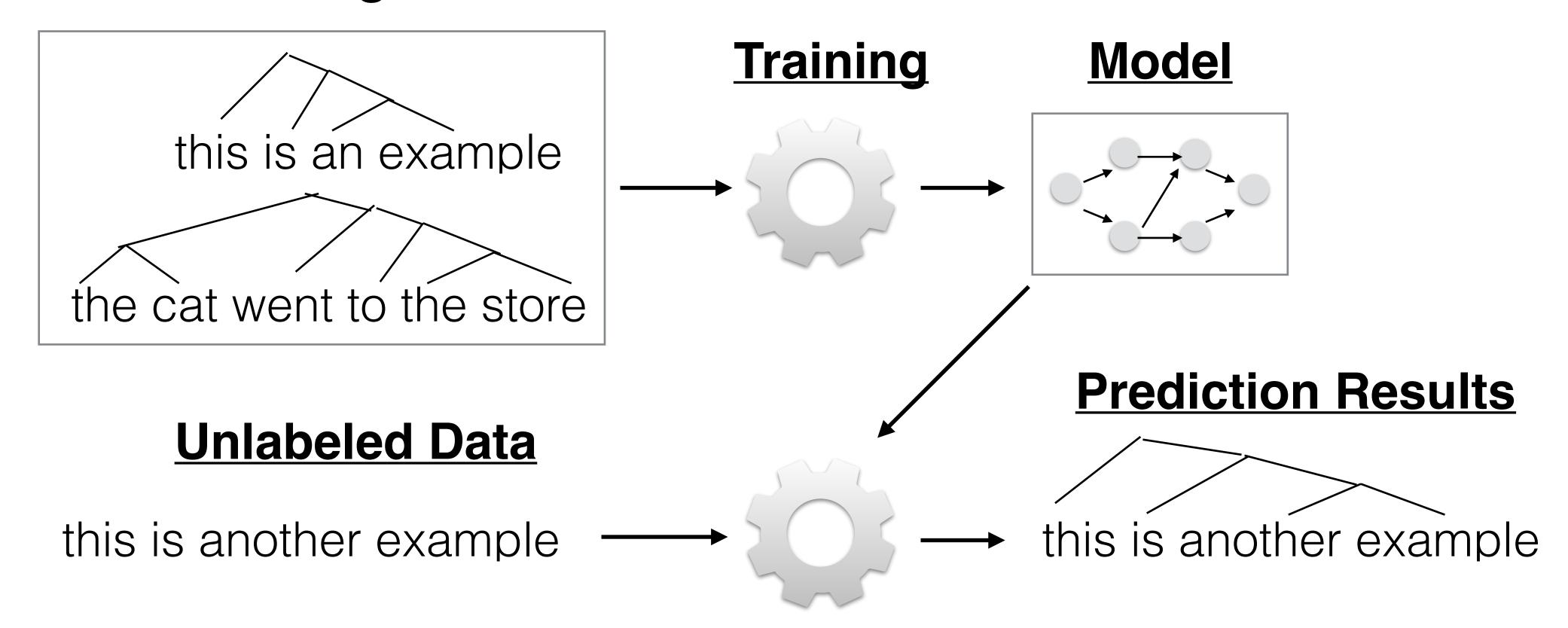
Carnegie Mellon University

Language Technologies Institute

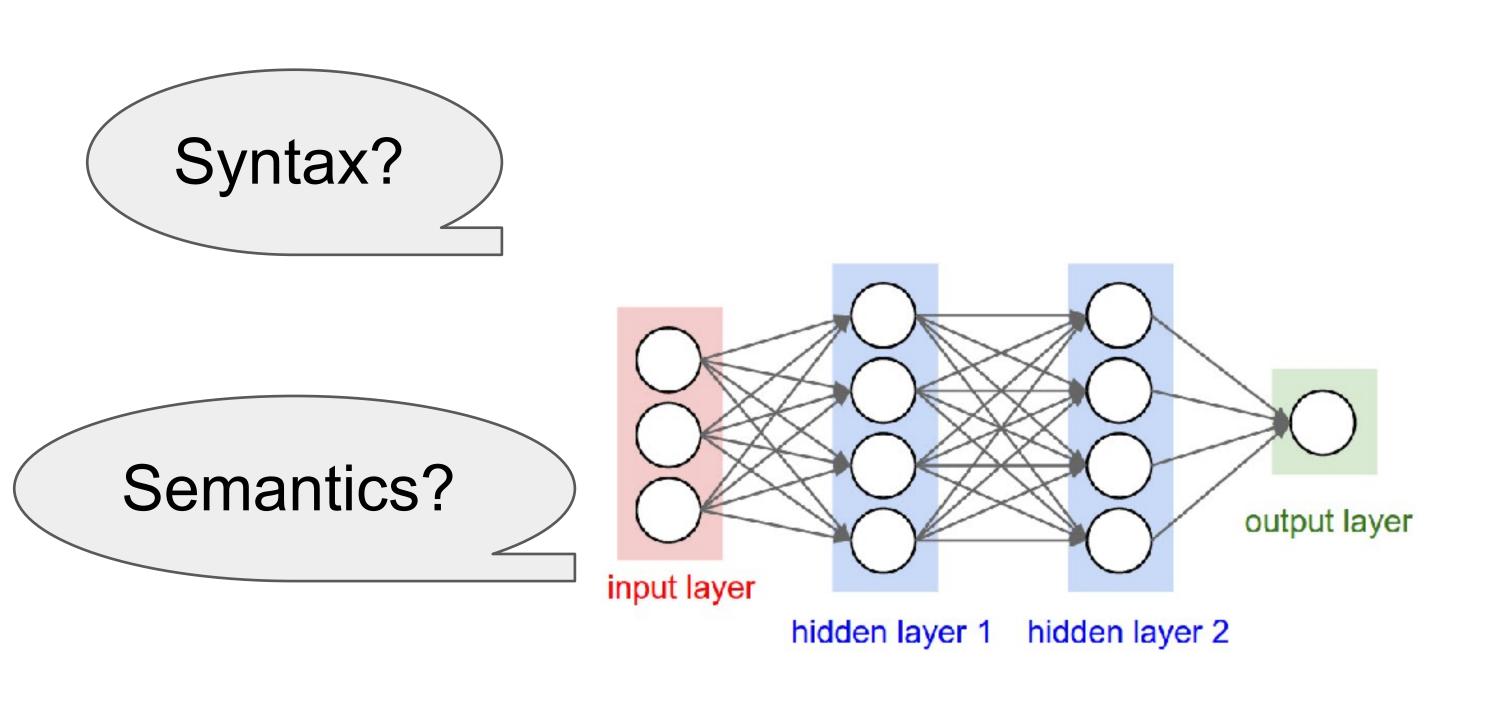
@ New York University 4/12/2018

Supervised Training for Natural Language Processing

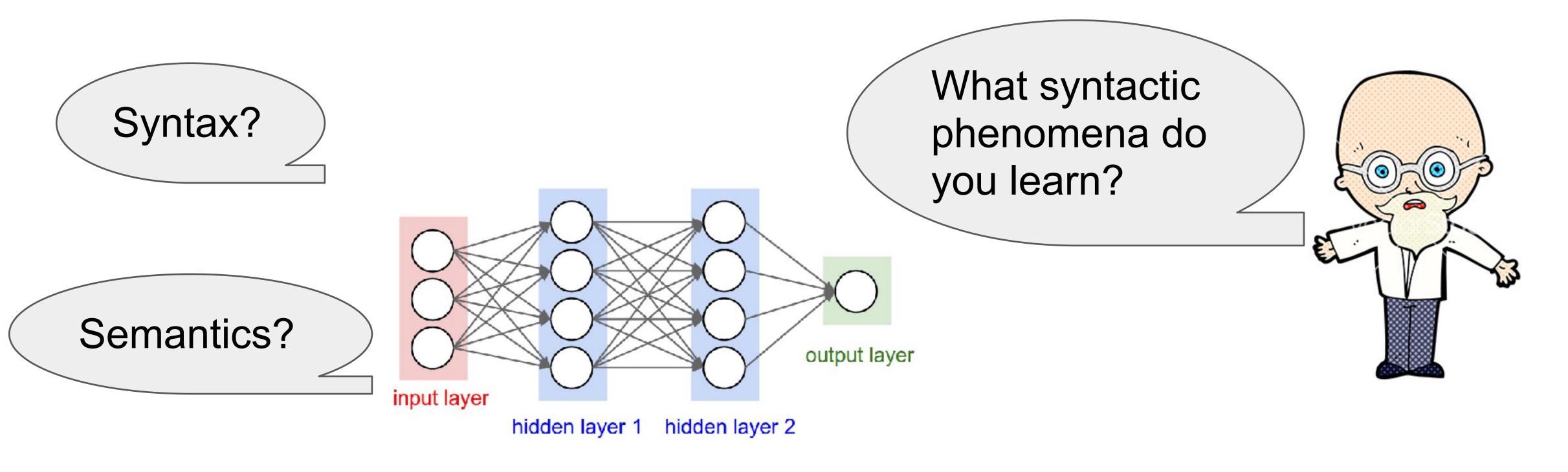
Training Data



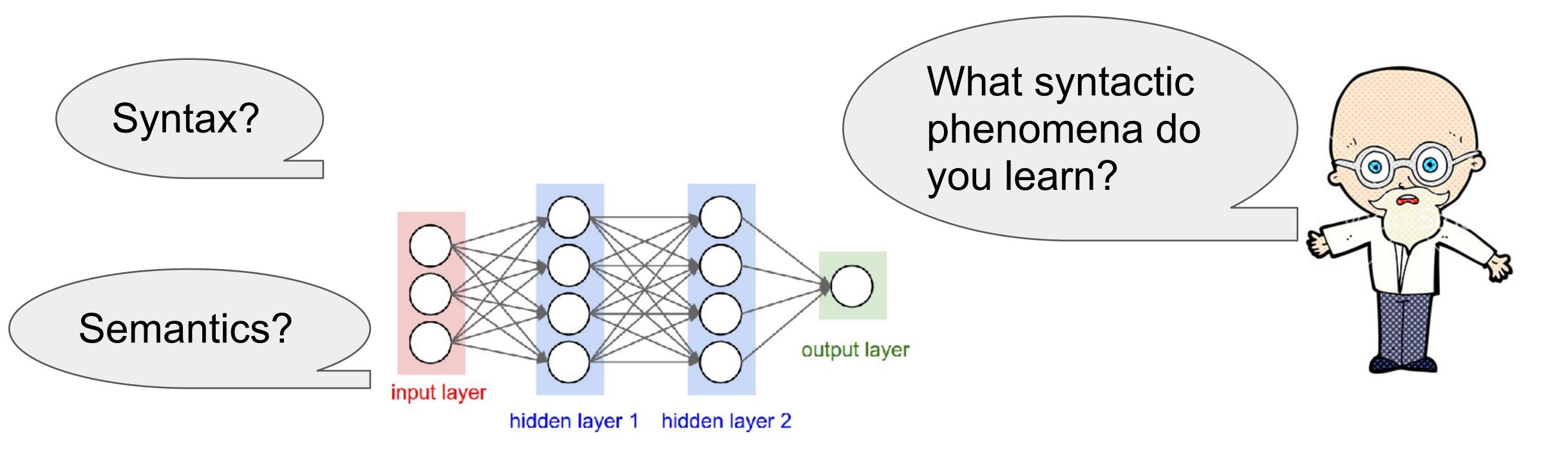
Neural networks are mini-scientists!



Neural networks are mini-scientists!



Neural networks are mini-scientists!



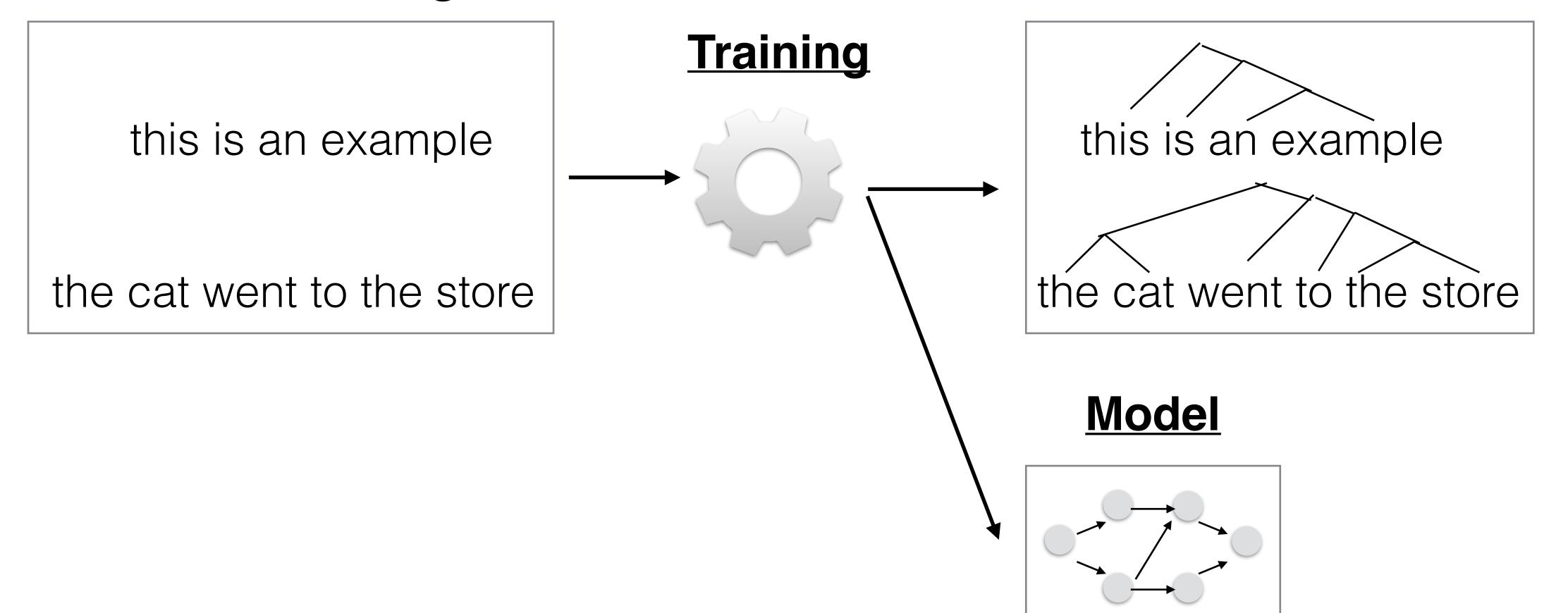
New way of testing linguistic hypothesis

Basis to further improve the model

Unsupervised Training of Neural Networks for Language

Unlabeled Training Data

Induced Structure/Features

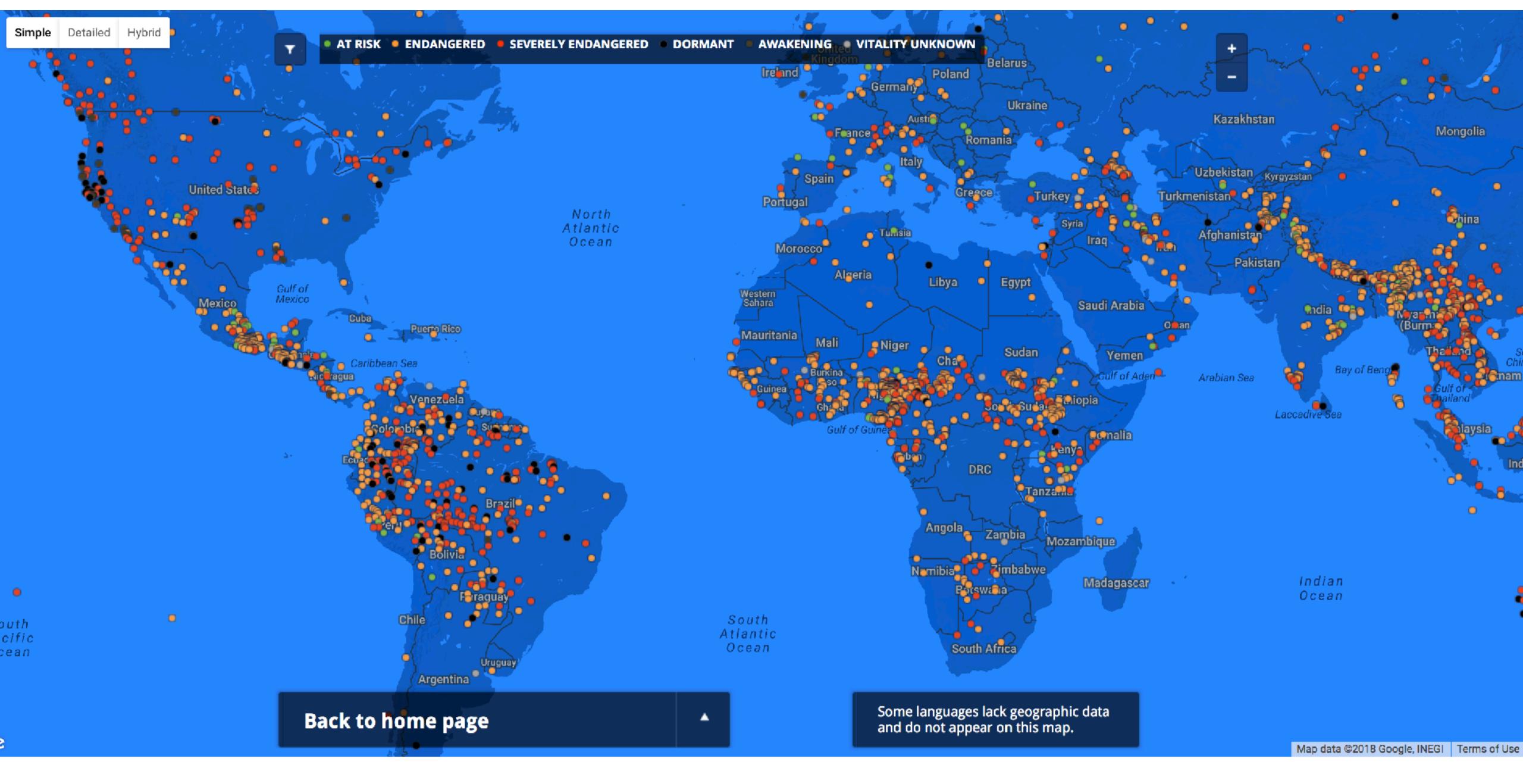


Three Case Studies

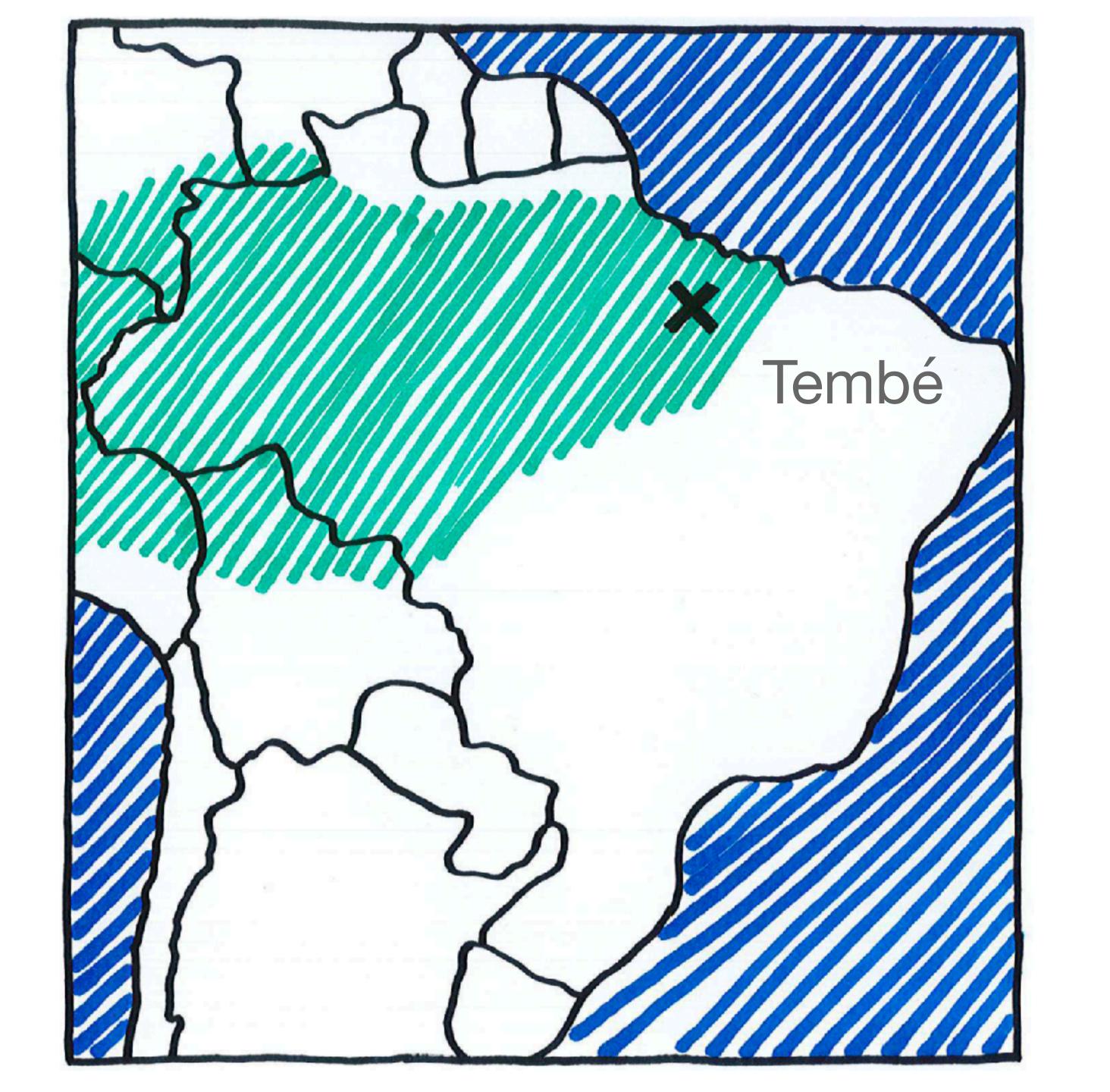
- Learning features of a language through translation
- Learning about linguistic theories by learning to parse
- Methods to accelerate your training for NLP and beyond

Learning Language Representations for Typology Prediction

Chaitanya Malaviya, Graham Neubig, Patrick Littell EMNLP2017



http://endangeredlanguages.com/



Augustine Emidio

Photos by Steven Bird

Why Document Endangered Languages?

- For young speakers: in many cultures, revived interest in learning their ancestral language.
- For posterity: our incredibly rich linguistic heritage is in danger, and at the very least, we'd like to preserve it.

Linguistic Typology

Syntax: e.g. what is the word order?

English = SVO: *he bought a car* **Japanese** = SOV: *kare wa kuruma wo katta*

Irish = VSO: cheannaigh sé carr

Malagasy = VOS: nividy fiara izy

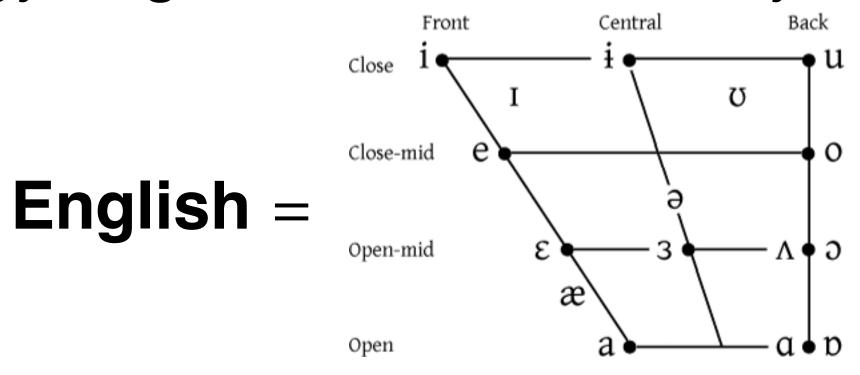
Morphology: e.g. how does it conjugate words?

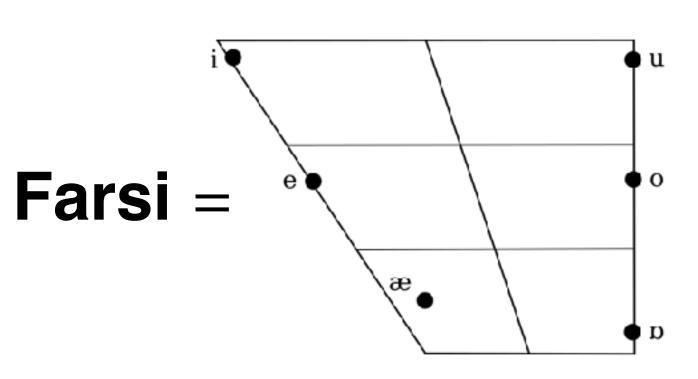
English = fusional: she opened the door for him again

Japanese = agglutinative: kare ni mata doa wo aketeageta

Mohawk = polysynthetic: sahonwanhotónkwahse

Phonology: e.g. what is its inventory of vowel sounds?





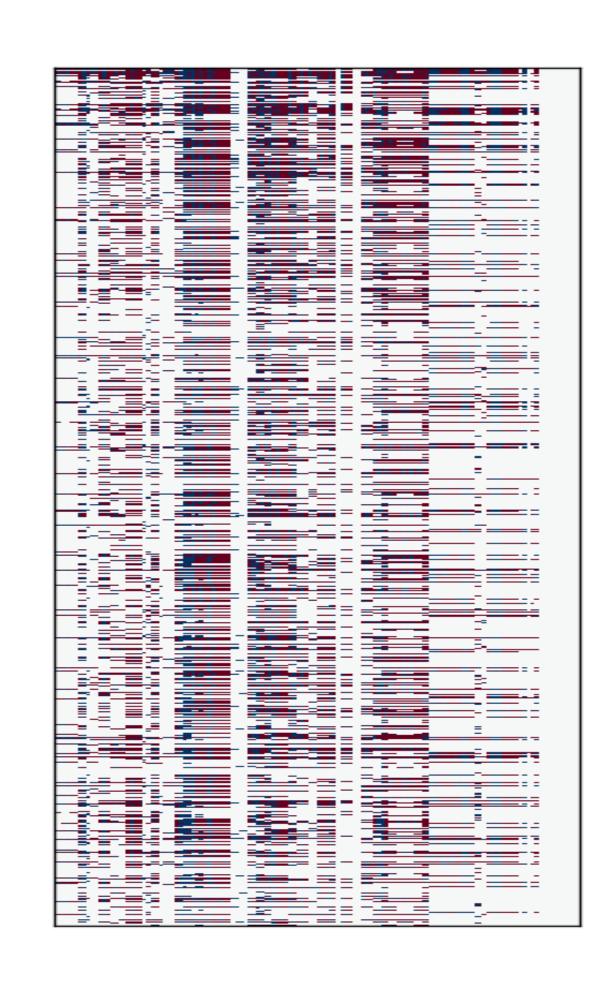
"Encyclopedias" of Linguistic Typology

- There are 7,099 living languages in the world
- Databases that contain information about their features
 - World Atlas of Language Structures (Dryer & Haspelmath 2013)
 - Syntactic Structures of the World's Languages (Collins & Kayne 2011)
 - PHOIBLE (Moran et al. 2014)
 - Ethnologue (Paul 2009)
 - Glottolog (Hammarström et al. 2015)
 - Unicode Common Locale Data Repository, etc.

Information is Woefully Incomplete!

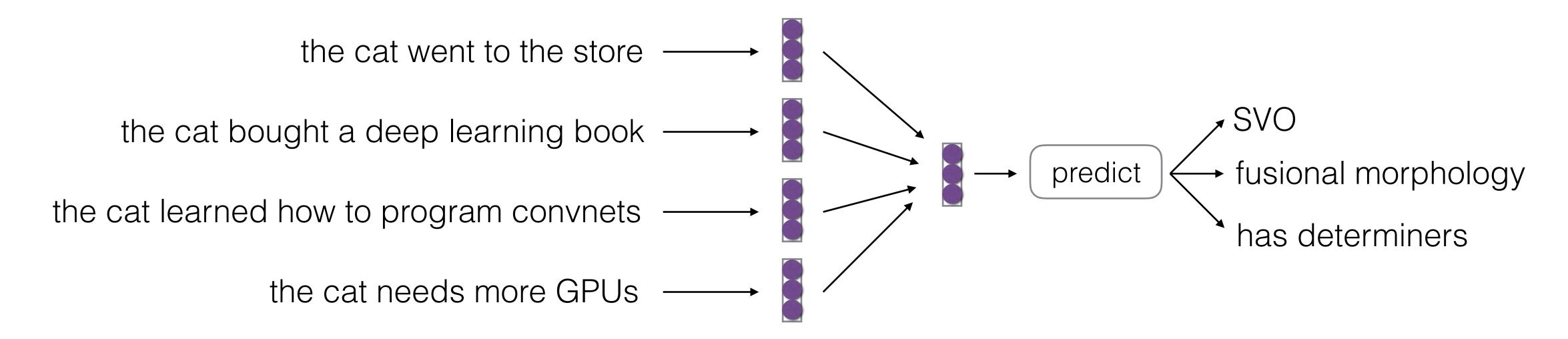
- The World Atlas of Language
 Structures is a general database of
 typological features, covering ≈200
 topics in ≈2,500 languages.
- Of the possible feature/value pairs, only about 15% have values
- Can we learn to fill in this missing knowledge about the languages of the world?

Features



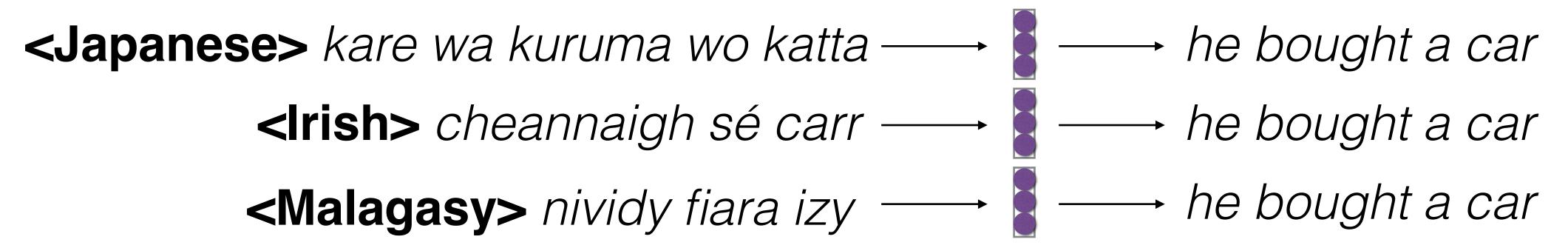
How Do We Learn about an Entire Language?!

- Proposed Method:
 - Create representations of each sentence in the language
 - Aggregate the representations over all the sentences
 - Predict the language traits

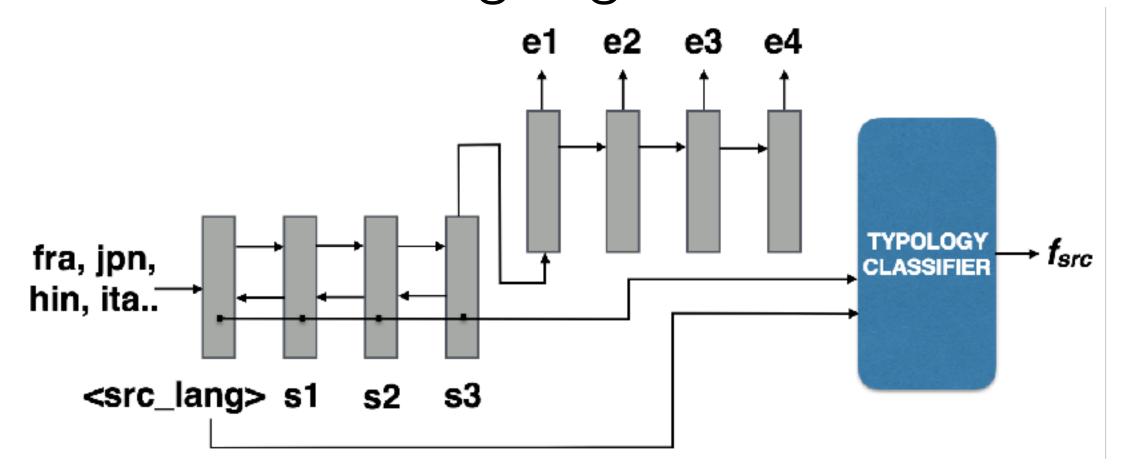


How do we Represent Sentences?

• Our proposal: learn a multi-lingual translation model



Extract features from the language token and intermediate hidden states



 Inspired by previous work that demonstrated that MT hidden states have correlation w/ syntactic features (Shi et al. 2016, Belinkov et al. 2017)

Experiments

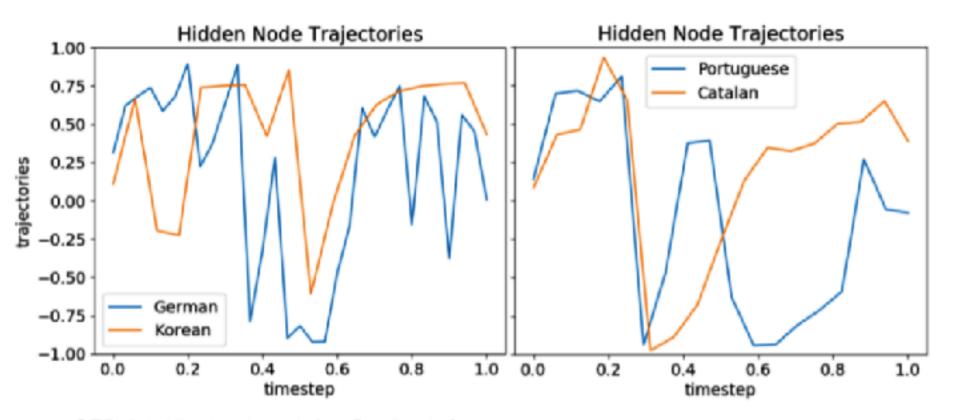
- Train an MT system translating 1017 languages to English on text from the Bible
- Learned language vectors available here:
 https://github.com/chaitanyamalaviya/lang-reps
- Estimate typological features from the URIEL database (http://www.cs.cmu.edu/~dmortens/uriel.html) using cross-validation
- Baseline: a k-nearest neighbor approach based on language family and geographic similarity

Results

 Learned representations encode information about the entire language, and help w/ predicting its traits (c.f. language model)

	Syntax		Phonology		Inventory	
	-Aux	+Aux	-Aux	+Aux	-Aux	+Aux
None	69.91	83.07	77.92	86.59	85.17	90.68
LMVEC	71.32	82.94	80.80	86.74	87.51	89.94
MTVEC	74.90	83.31	82.41	87.64	89.62	90.94
MTCELL	75.91	85.14	84.33	88.80	90.01	90.85
МТВотн	77.11	86.33	85.77	89.04	90.06	91.03

 Trajectories through the sentence are similar for similar languages



GER: Ich bin das A und das O, der Anfang und das Ende, spricht Gott der HERR, der da ist und der da war und der da kommt, der Allmächtige.

CAI: Pau , KOR: 지금도 계시고 전에도 계셨고 앞으로 오실 전 apòstol de 등하신 주 하나님께서 " 나는 알파요 오메가다 " 하고 말씀하십니다 .

POR: Paulo , chamado para ser apóstolo de Cristo Jesus pela vontade de Deus , e o irmão Sóstenes

CAT: Pau, cridat per voler de Déu a ser apòstol de Jesucrist, i el germà Sòstenes

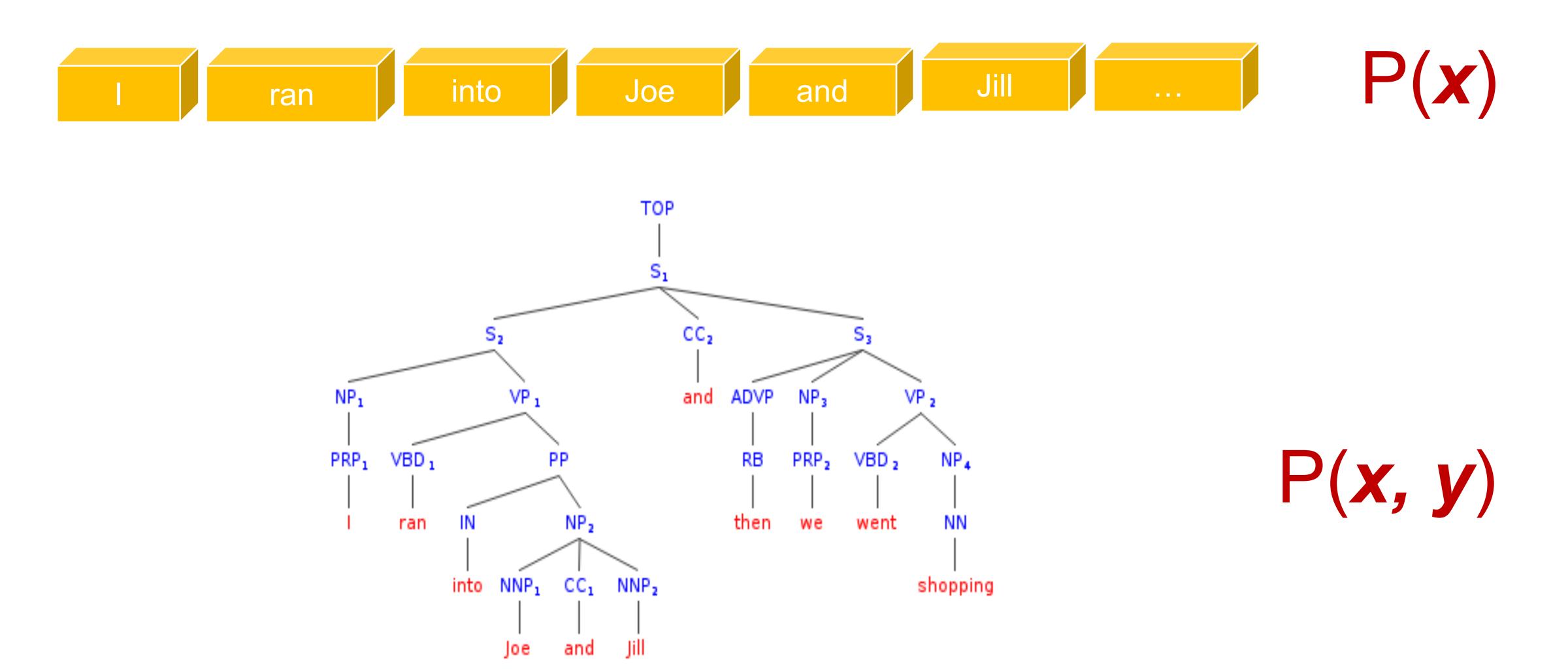
We Can Learn About Language from Unsupervised Learning!

- We can use deep learning and naturally occurring translation data to learn features of language as a whole.
- But this is still on the level of extremely coarse-grained typological features
- What if we want to examine specific phenomena in a deeper way?

What Can Neural Networks Learn about Syntax?

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong Chris Dyer, Graham Neubig, Noah A. Smith EACL2017 (Outstanding Paper Award)

An Alternative Way of Generating Sentences



Overview

- Crash course on Recurrent Neural Network Grammars (RNNG)
- Answering linguistic questions through RNNG learning

No. Steps	Stack	String Terminals	Action
0			NT(S)
_			

No. Steps	Stack	Terminals	Action
0			NT(S)
1	(S		NT(NP)
2	(SI(NP		GEN(the)

No. Steps	Stack	Terminals	Action
0			NT(S)
1	(S		NT(NP)
2	(S (NP		GEN(the)
3	(S (NP the	the	GEN(hungry)

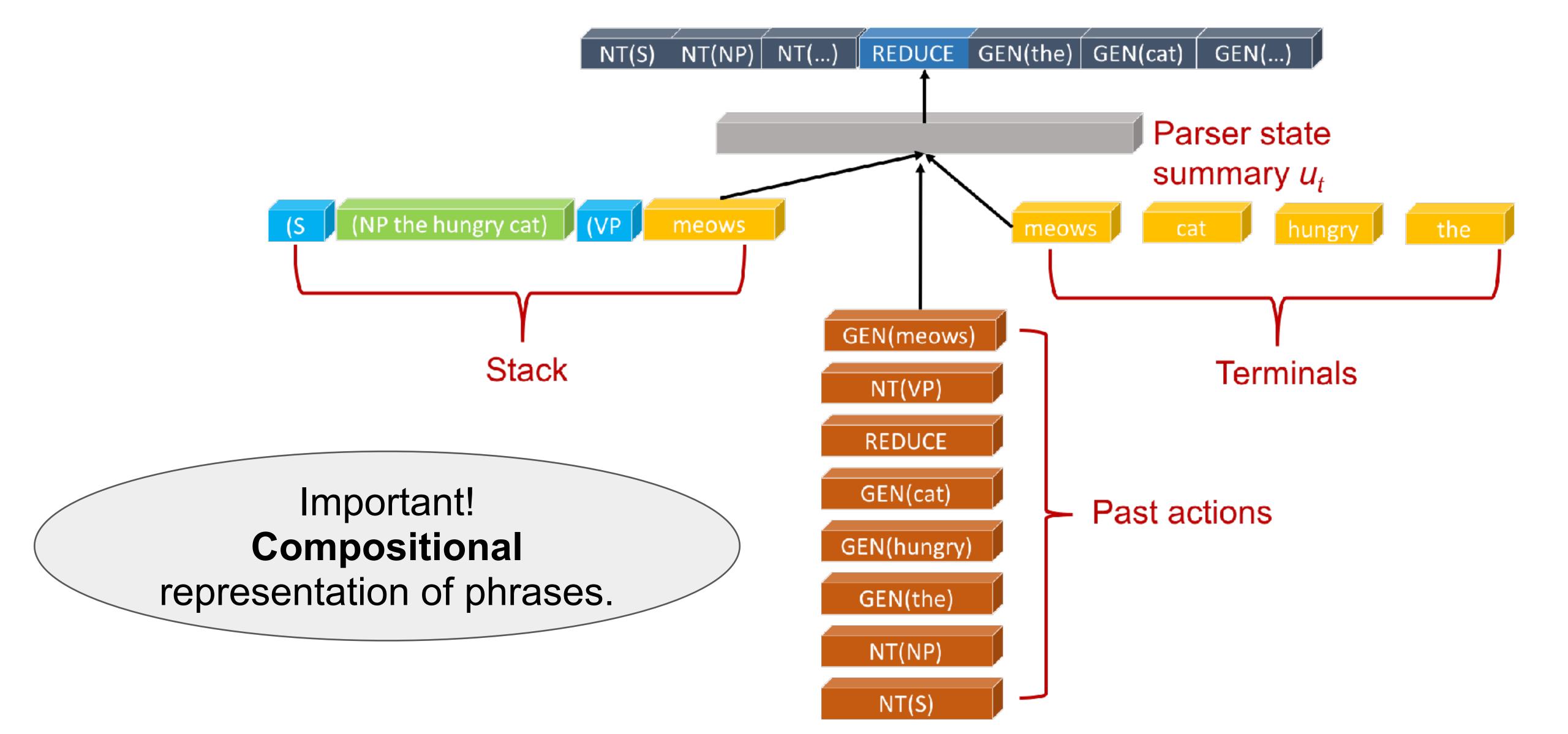
No. Steps	Stack	Terminals	Action
0			NT(S)
1	(S		NT(NP)
2	(S (NP		GEN(the)
3	(S (NP the	the	GEN(hungry)
4	(S (NP the hungry	the hungry	GEN(cat)

No. Steps	Stack	Terminals	Action
0			NT(S)
1	(S		NT(NP)
2	(S (NP		GEN(the)
3	(S (NP the	the	GEN(hungry)
4	(S (NP the hungry	the hungry	GEN(cat)
5	(S (NP the hungry cat	the hungry cat	REDUCE

No. Steps	Stack	Terminals	Action
0			NT(S)
1	(S		NT(NP)
2	(S (NP		GEN(the)
3	(S (NP the	the	GEN(hungry)
4	(S (NP the hungry	the hungry	GEN(cat)
5	(S (NP the hungry cat	the hungry cat	REDUCE
6	(S (NP the hungry cat)	the hungry cat	NT(VP)

No. Steps	Stack	Terminals	Action
0			NT(S)
1	(S		NT(NP)
2	(S (NP		GEN(the)
3	(S (NP the	the	GEN(hungry)
4	(S (NP the hungry	the hungry	GEN(cat)
5	(S (NP the hungry cat	the hungry cat	REDUCE
6	(S (NP the hungry cat)	the hungry cat	NT(VP)

Model Architecture



PTB Test Experimental Results

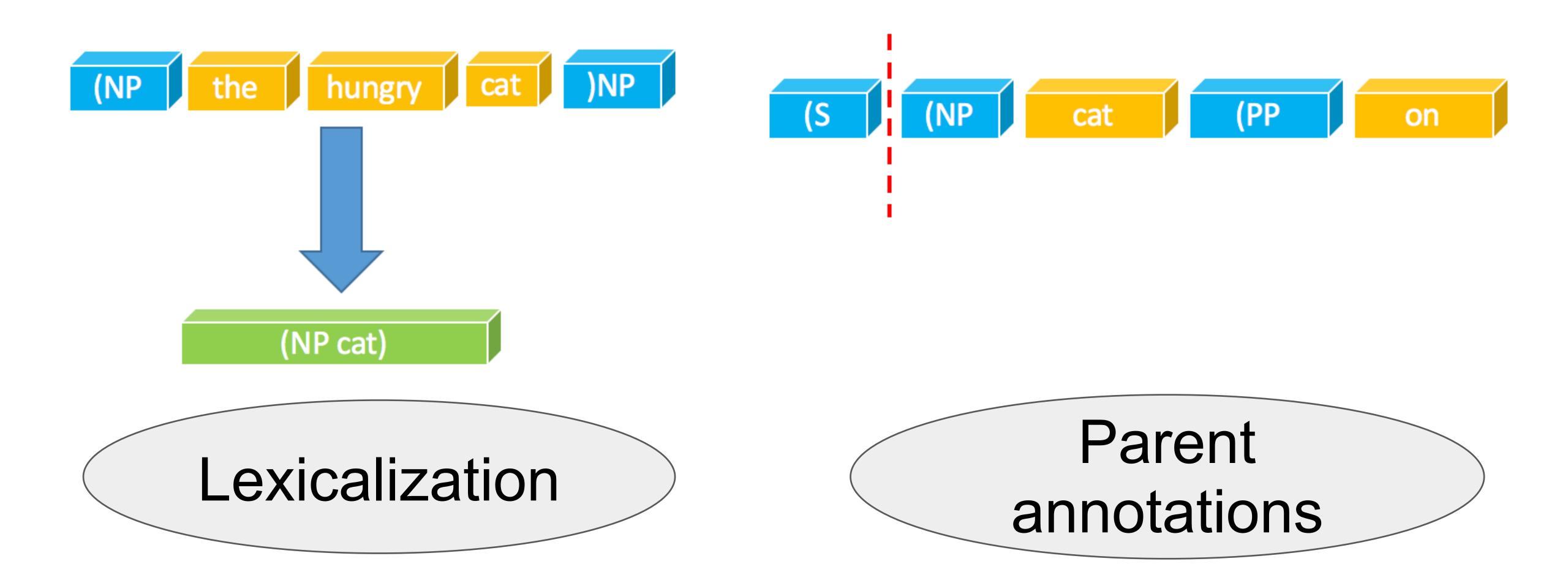
Parsing F1

Model	Parsing F1
Collins (1999)	88.2
Petrov and Klein (2007)	90.1
RNNG	93.3
Choe and Charniak (2016) - Supervised	92.6

LM Ppl.

Model	LM ppl.
IKN 5-gram	169.3
Sequential LSTM LM	113.4
RNNG	105.2

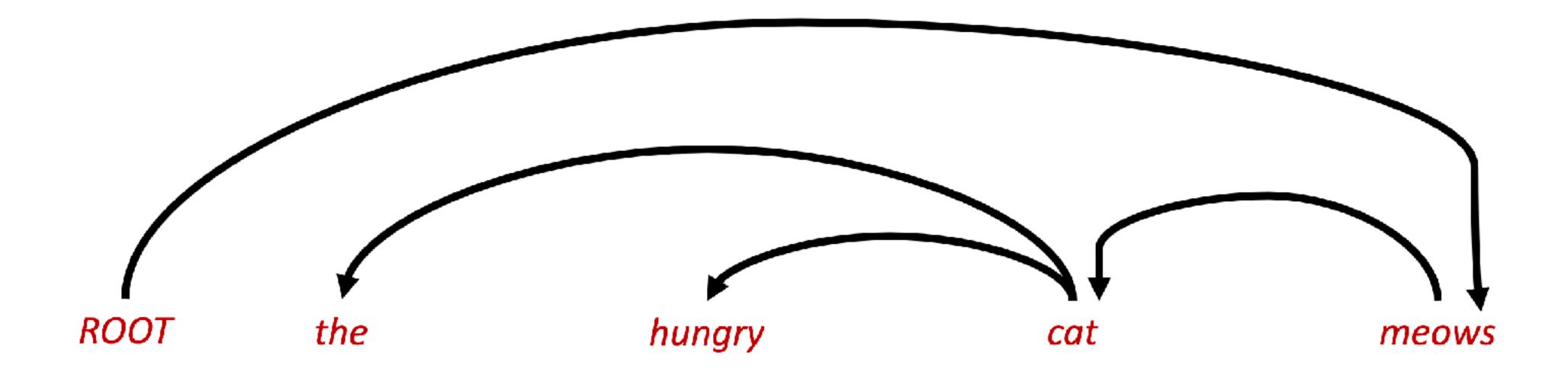
In The Process of Learning, Can RNNGs Teach Us About Language?



Question 1: Can The Model Learn "Heads"?

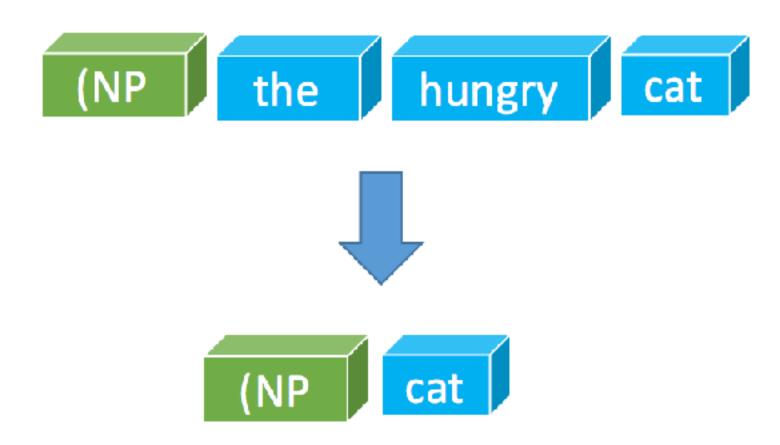
Method: New interpretable attention-based composition function

Result: sort of



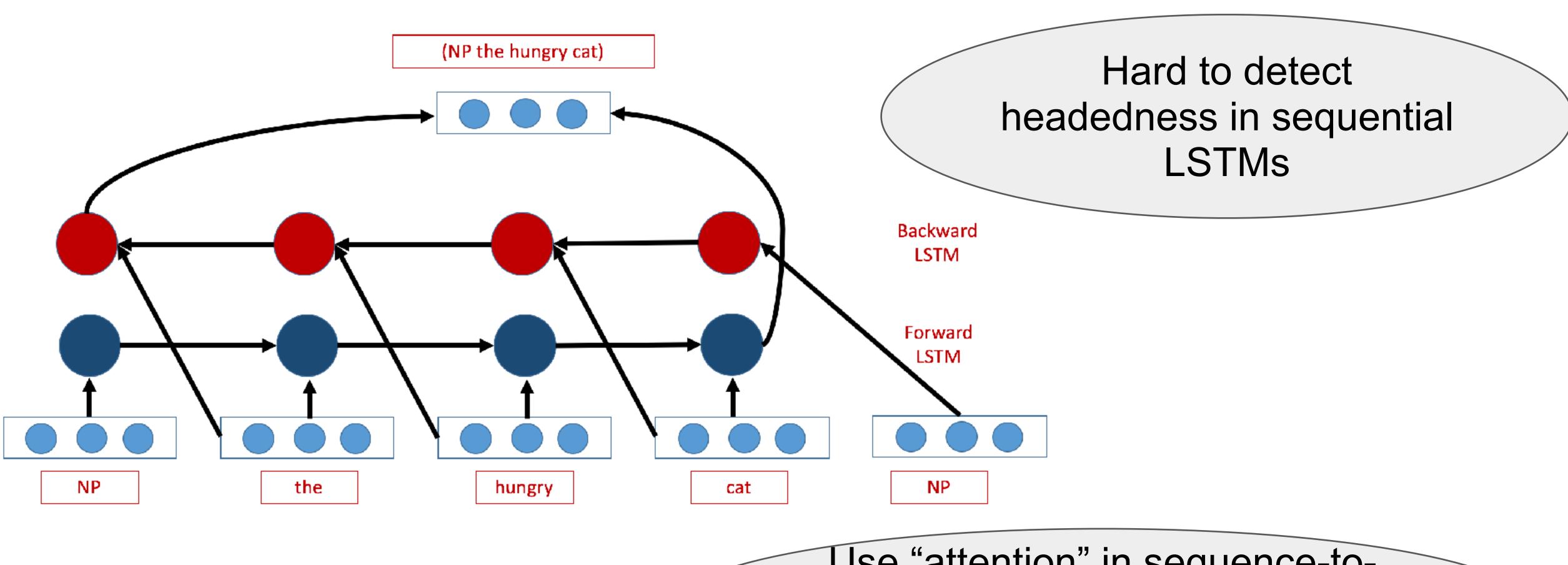
Headedness

 Linguistic theories of phrasal representation involve a strongly privileged lexical head that determines the whole representation



 Hypothesis for single lexical heads (Chomsky, 1993) and multiple ones for tricky cases (Jackendoff 1977; Keenan 1987)

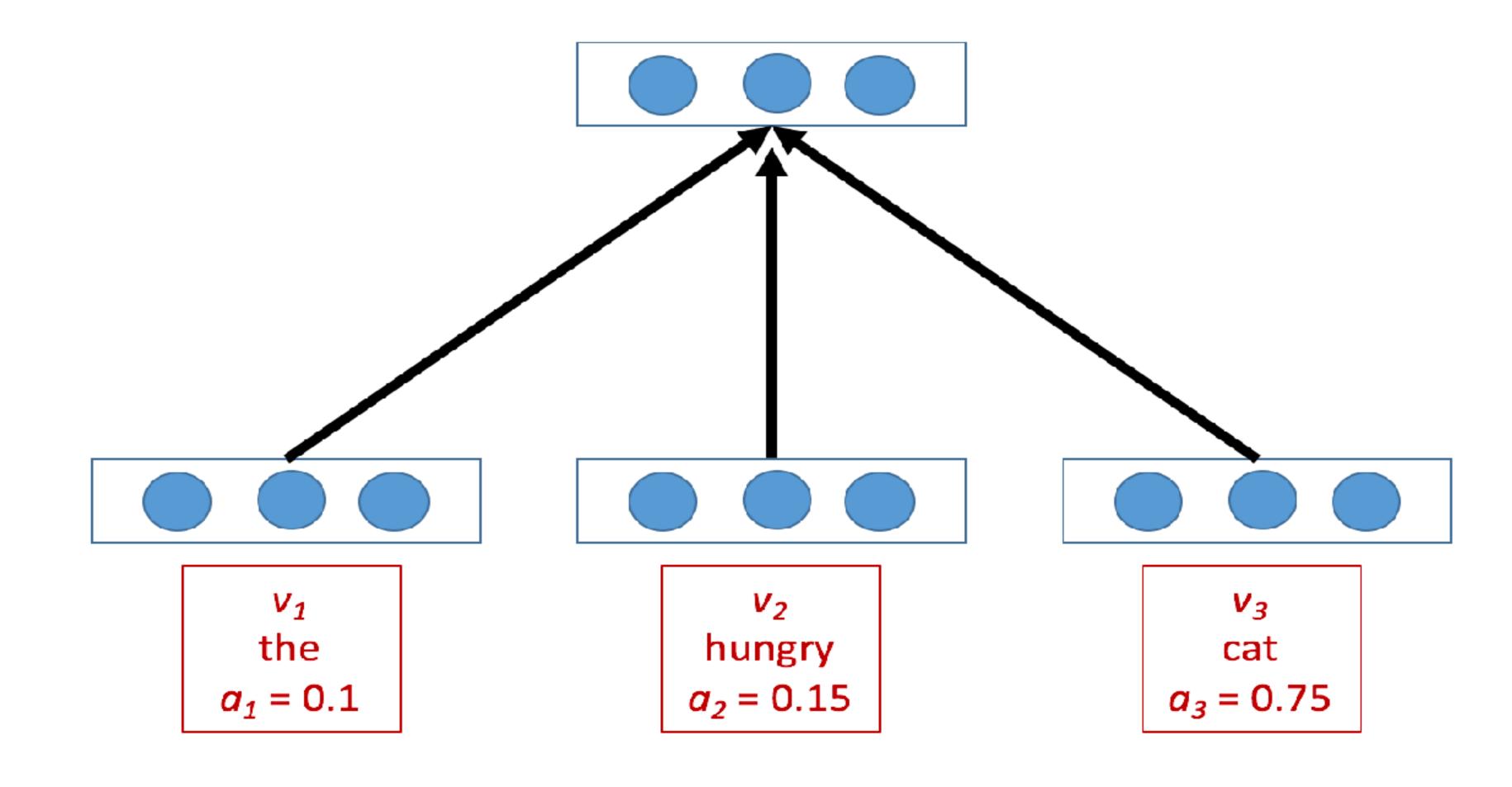
RNNG Composition Function



Use "attention" in sequence-tosequence model (Bahdanau et al., 2014)

Key Idea of Attention

 $v_{the\ hungry\ cat} = 0.1v_1 + 0.15v_2 + 0.75v_3$

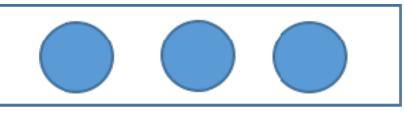


Two Extreme Cases of Attention



the $a_1 = 0.0$

hungry $a_2 = 0.0$



cat $a_3 = 1.0$

Perfect headedness Perplexity: 1

the $a_1 = 0.33$

hungry $a_2 = 0.33$



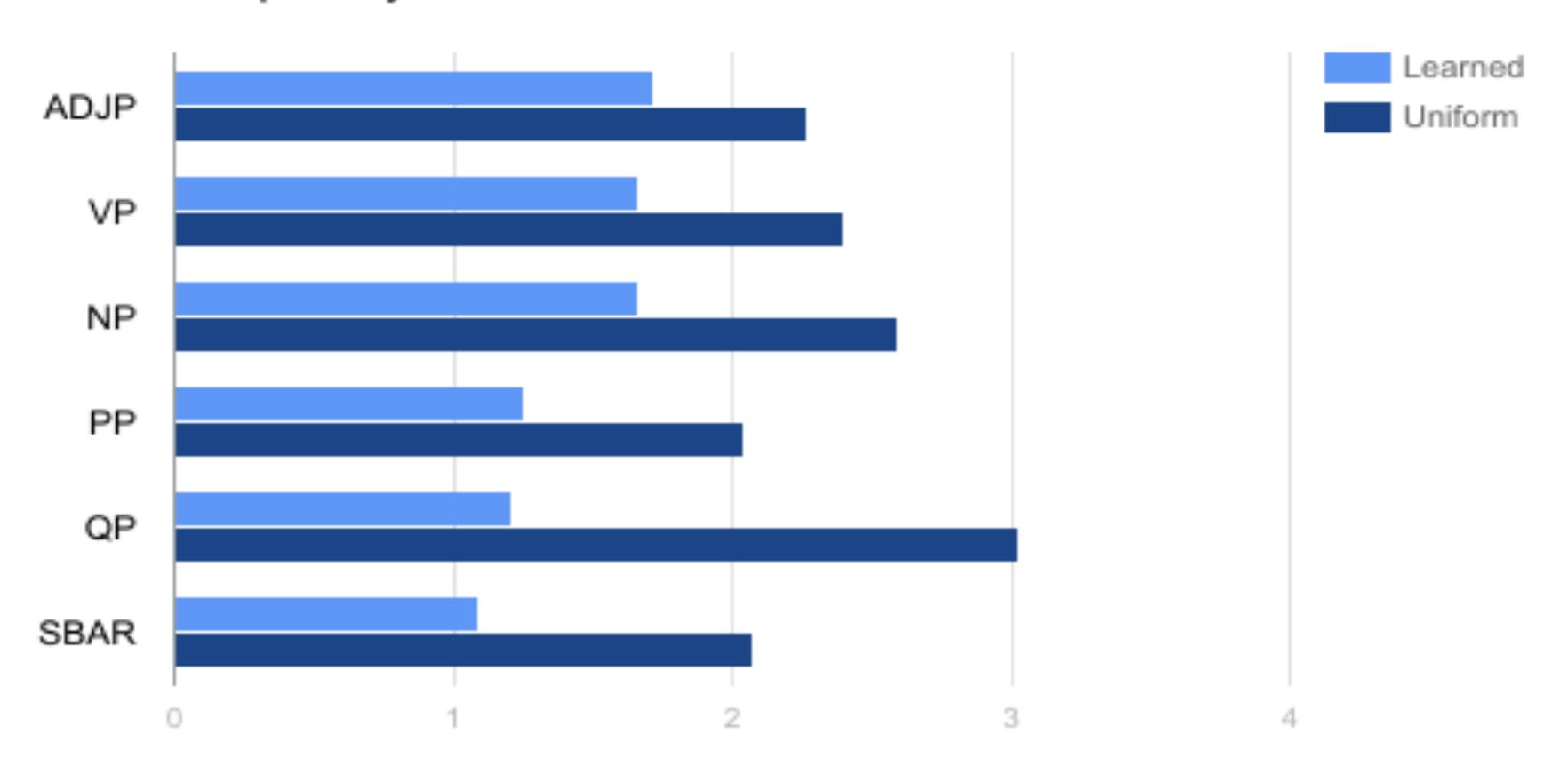
cat $a_3 = 0.33$

No headedness (uniform)

Perplexity: 3

Perplexity of the Attention Vectors

Perplexity of Learned Attention vs Uniform



Learned Attention Vectors

Noun Phrases

the (0.0) final (0.18) hour (0.81)

their (0.0) first (0.23) test (0.77)

Apple (0.62), (0.02) Compaq (0.1) and (0.01) IBM (0.25)

NP (0.01), (0.0) and (0.98) NP (0.01)

Learned Attention Vectors

Verb Phrases

to (0.99) VP (0.01)

did (0.39) n't (0.60) VP (0.01)

handle (0.09) NP (0.91)

VP (0.15) and (0.83) VP (0.02)

Learned Attention Vectors

Prepositional Phrases

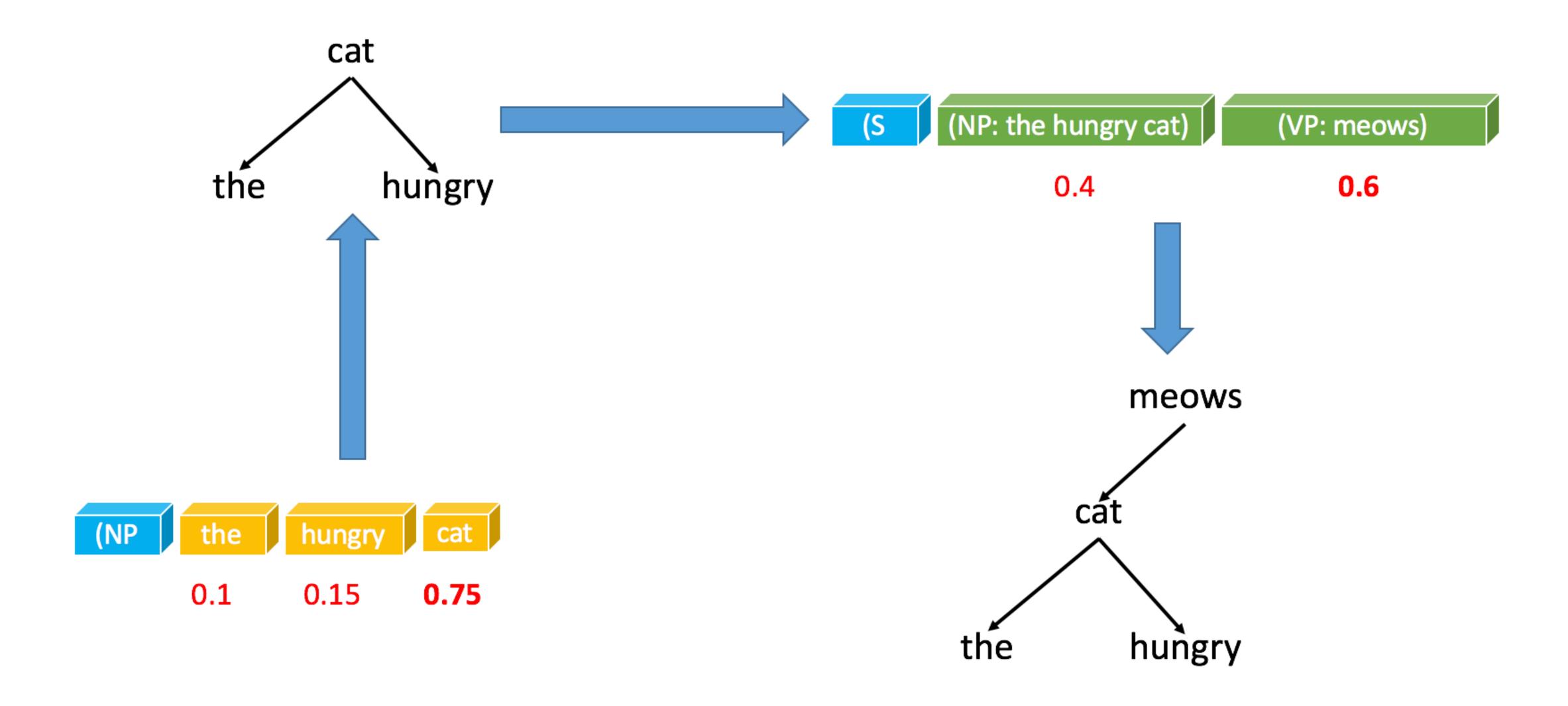
of (0.97) NP (0.03)

in (0.93) NP (0.07)

by (0.96) S (0.04)

NP (0.1) after (0.83) NP (0.06)

Quantifying the Overlap with Head Rules



Quantifying the Overlap with Head Rules

Reference	UAS
Random baseline	~28.6
Collins head rules	49.8
Stanford head rules	40.4

Question 2: Can the Model Learn Phrase Types?

Method: Ablate the nonterminal label categories from the data

Result: Nonterminal labels add very little, and the model learns something similar automatically

Role of Nonterminals

Exploring the endocentric or exocentric hypothesis of phrasal representation

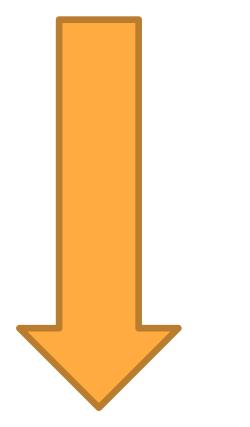
Endocentric: represent an NP with the noun headword

Exocentric: $S \rightarrow NP VP$ (relabel NP and VP with a new syntactic category "S")

 We use a data ablation procedure by replacing all nonterminal symbols with a single nonterminal category "X"

Nonterminal Ablation

(S (NP the hungry cat) (VP meows).)



(X (X the hungry cat) (X meows).)

Quantitative Results

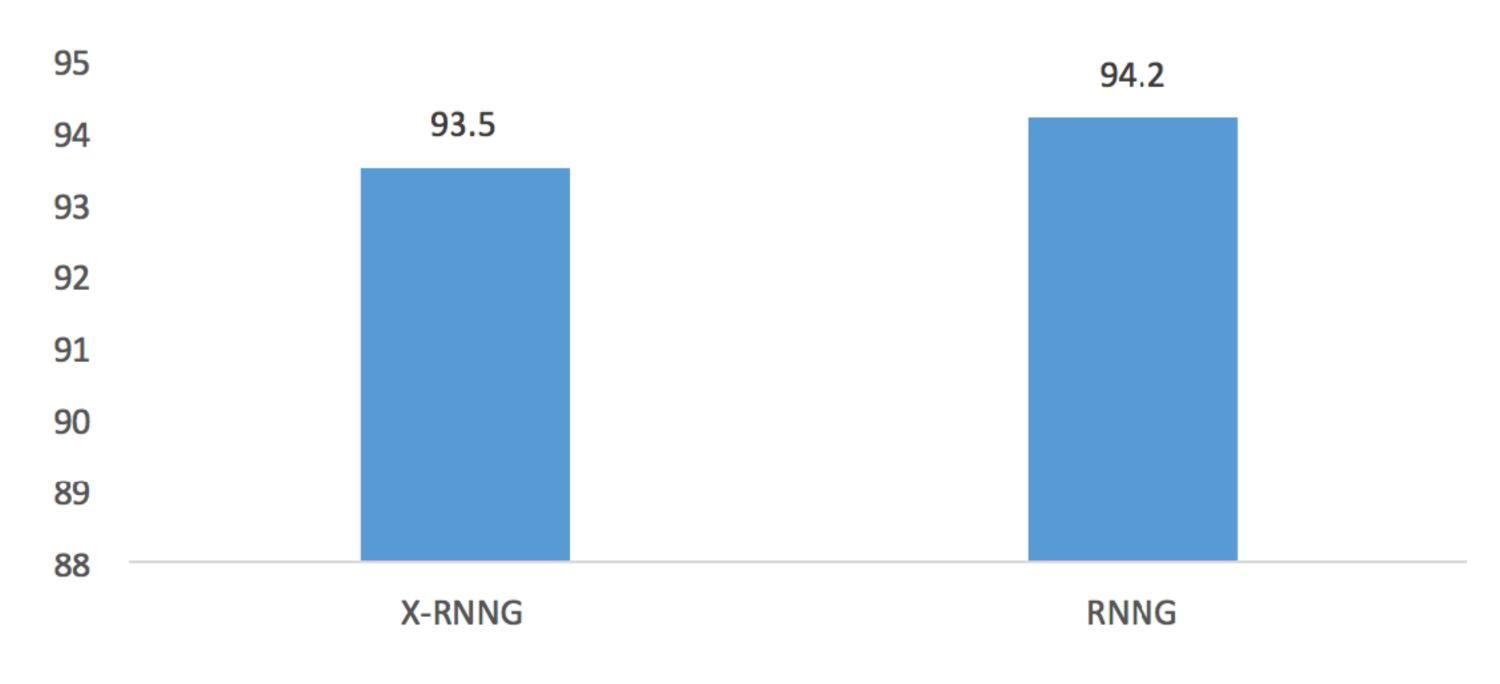
Gold: (X (X the hungry cat) (X meows).)

Predicted: (X (X the hungry) (X cat meows).)

Quantitative Results

Gold: (X (X the hungry cat) (X meows).)

Predicted: (X (X the hungry) (X cat meows).)



Visualization

Conclusion

- RNNG learns (imperfect) headedness, which is both similar and distinct to linguistic theories
- RNNG is able to rediscover nonterminal information given weak bracketing structures, and also make nontrivial semantic distinctions

On-the-fly Operation Batching in Dynamic Computation Graphs

Graham Neubig, Yoav Goldberg, Chris Dyer NIPS 2017

Efficiency Tricks: Mini-batching

- On modern hardware 10 operations of size 1 is much slower than 1 operation of size 10
- Minibatching combines together smaller operations into one big one

Minibatching

Operations w/o Minibatching

Operations with Minibatching

$$x_1 x_2 x_3$$
 concat broadcast broadcast tanh($x_1 x_2 x_3$)

Manual Mini-batching

- In language processing tasks, you need to:
 - Group sentences into a mini batch (optionally, for efficiency group sentences by length)
 - Select the "t"th word in each sentence, and send them to the lookup and loss functions

http://dynet.io

- Dynamic graph toolkit implemented in C++, usable from C++,
 Python, Scala/Java
- **Very fast on CPU** (good for prototyping NLP apps!), similar support to other toolkits for GPU
- Support for on-the-fly batching, implementation of minibatching, even in difficult situations

Mini-batched Code Example

```
# in_words is a tuple (word_1, word_2)
# out_label is an output label
word_1 = E[in_words[0]]
word_2 = E[in_words[1]]
scores_sym = W*dy.concatenate([word_1, word_2])+b
loss_sym = dy.pickneglogsoftmax(scores_sym, out_label)
```

(a) Non-minibatched classification.

```
# in_words is a list [(word_{1,1}, word_{1,2}), (word_{2,1}, word_{2,2}), ...]

# out_labels is a list of output labels [label_1, label_2, ...]

word_1_batch = dy.lookup_batch(E, [x[0] for x in in_words])

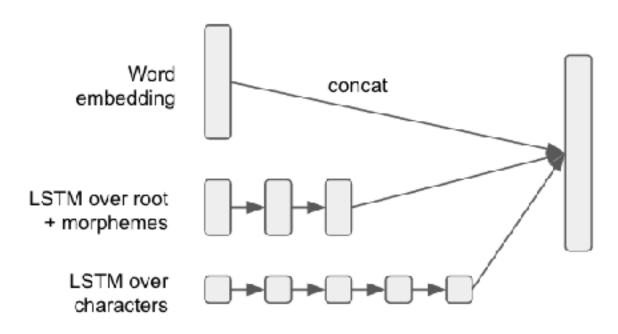
word_2_batch = dy.lookup_batch(E, [x[1] for x in in_words])

scores_sym = W*dy.concatenate([word_1_batch, word_2_batch])+b

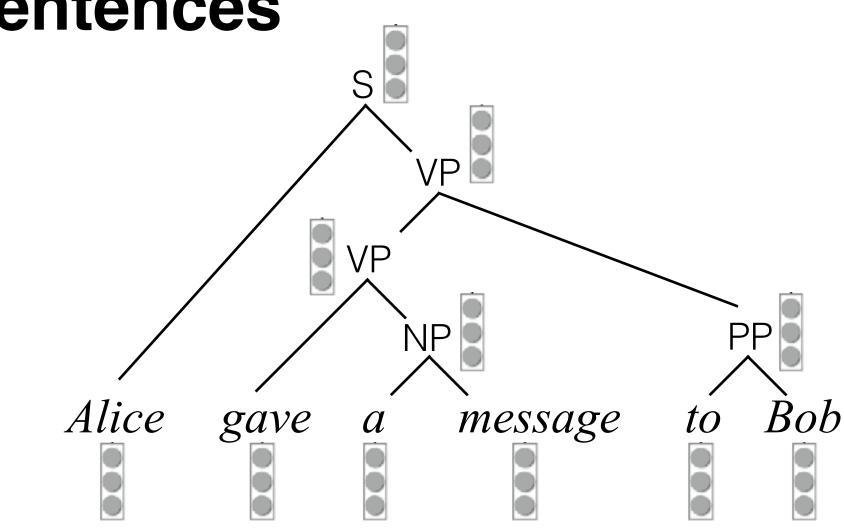
loss_sym = dy.sum_batches( dy.pickneglogsoftmax_batch(scores_sym, out_labels) )
```

But What about These?

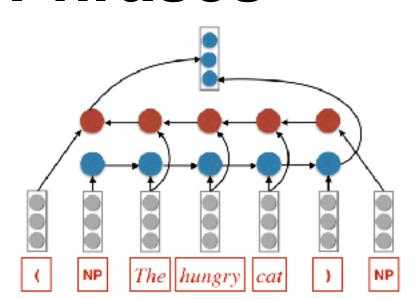
Words



Sentences



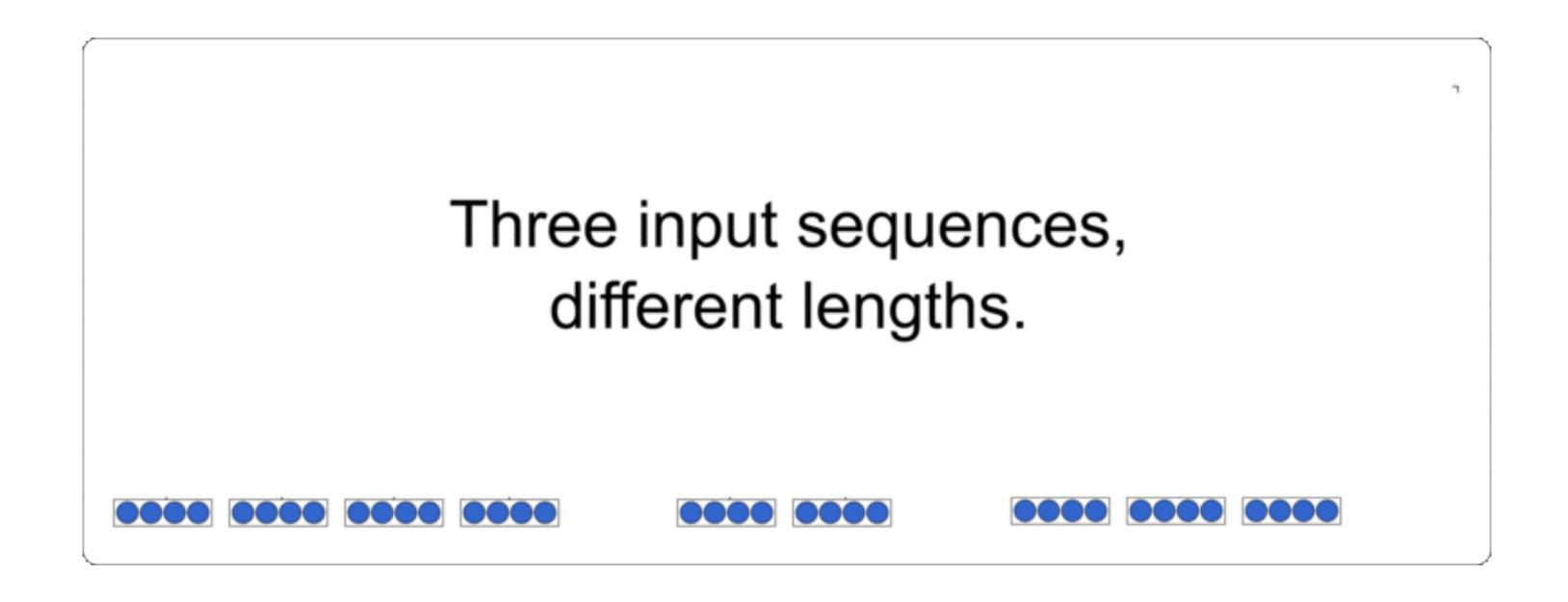
Phrases



Documents

■ This film was completely unbelievable. The characters were wooden and the plot was absurd. That being said, I liked it.

Automatic Mini-batching!



- TensorFlow Fold (complicated combinators)
- DyNet Autobatch (basically effortless implementation)

Autobatching Algorithm

- for each minibatch:
 - for each data point in mini-batch:
 - define/add data
 - sum losses
 - forward (autobatch engine does magic!)
 - backward
 - · update

Speed Improvements

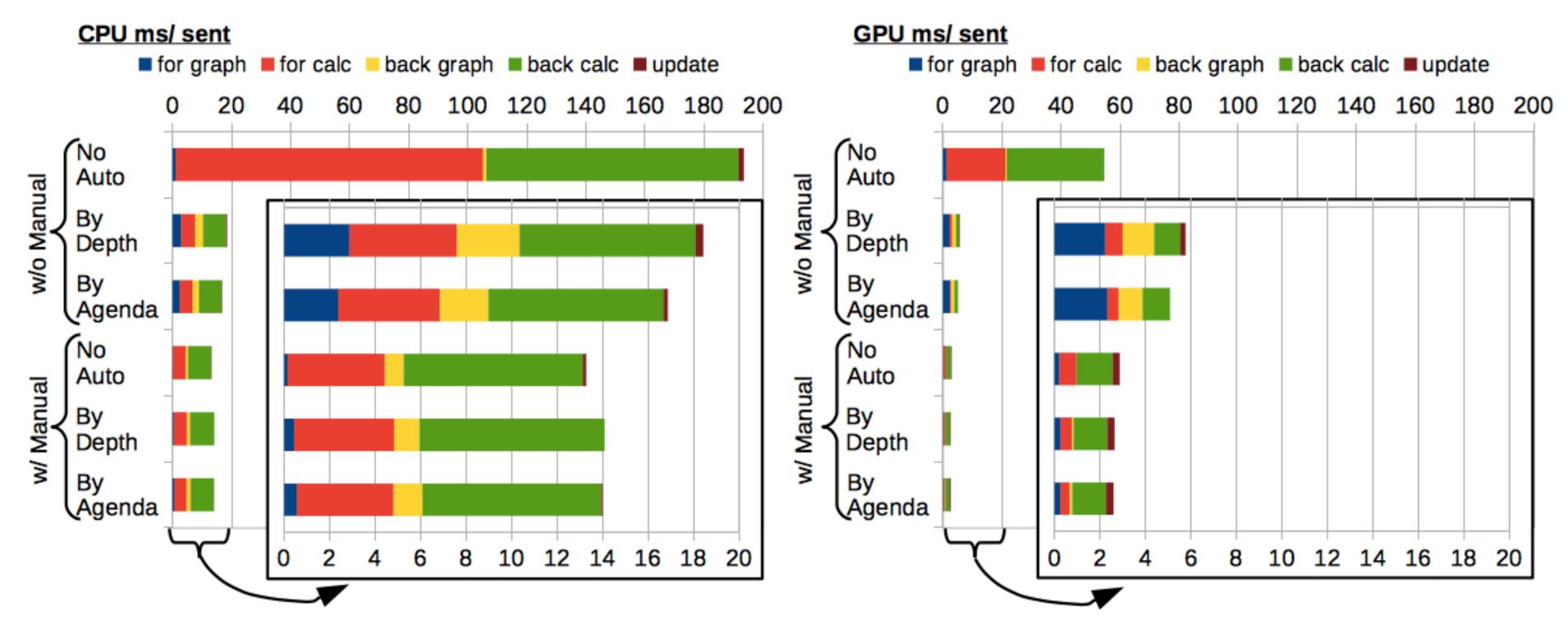


Table 1: Sentences/second on various training tasks for increasingly challenging batching scenarios.

Task	CPU			GPU		
	NoAuto	ByD EPTH	BYAGENDA	NoAuto	ByD EPTH	BYAGENDA
BiLSTM	16.8	139	156	56.2	337	367
BiLSTM w/ char	15.7	93.8	132	43.2	183	275
TreeLSTM	50.2	348	357	76.5	672	661
Transition-Parsing	16.8	61.0	61.2	33.0	89.5	90.1

Conclusion

Neural Networks as Science

- We all know that neural networks are great for engineering; accuracy gains are undeniable
- But can we also use them as our partners in science?
- Design a net, ask it questions, and see if it's answers surprise you!

Questions?